Chip-Firing Games & Graphical Riemann-Roch A Machine-Assisted Proof Framework in Lean4

Dhyey Mavani Advisor: Prof. Nathan Pflueger

> Department of Mathematics Amherst College

MATH Honors Thesis Defense April 2025

Table of Contents

- Machine-Assisted Proving in Mathematics
- Introduction to Chip-Firing Games
- Algorithms for Winnability
- Riemann-Roch for Graphs
- 5 Formalization of Graphical Riemann Roch in Lean4
- 6 Reflections & Future Work

Table of Contents

- Machine-Assisted Proving in Mathematics
- 2 Introduction to Chip-Firing Games
- Algorithms for Winnability
- 4 Riemann-Roch for Graphs
- 5 Formalization of Graphical Riemann Roch in Lean4
- 6 Reflections & Future Work

Proof Assistants in Modern Mathematics

Key Proof Assistants

- Lean4 Modern system and programming language
- Coq Based on Calculus of Inductive Constructions
- Isabelle Higher-order logic framework

Benefits of Machine-Assisted Proving in Lean4

Technical Advantages

- Systematic elimination of proof errors
- Modularity for breaking down complex proofs (Mathlib4)
- Independent verification of components

Collaborative & Educational Benefits

- Enables team-based mathematical research
- Educational tools like "Natural Number Game"
- Popular among mathematicians (including Terence Tao)

Compilation Example

```
▼ Basic.lean:43:4
     import Mathlib.LinearAlgebra.Matrix.GeneralLinearGroup.Defs
     import Mathlib.Algebra.BigOperators.Group.Finset
                                                                                                                            ▼ case mp.a
     import Init.Core

▼ : Type

     import Init.NotationExtra
                                                                                                                           instf: : DecidableEq V
                                                                                                                           instf: Fintype V
    import Paperproof
                                                                                                                           edges : Multiset (V × V)
                                                                                                                           h : ∀ (v : V), (v, v) € edges
    set option linter.unusedVariables false
    set option trace.split.failure true
                                                                                                                           he : e E Multiset.filter (fun e + e.1 = e.2) edges
    set option linter.unusedSectionVars false
                                                                                                                           h eq : e.1 = e.2
                                                                                                                           he': e E edges
    open Multiset Finset
                                                                                                                           ⊢ False
                                                                                                                          ► All Messages (0)
    variable {V : Type} [DecidableEq V] [Fintype V]
    def isLoopless (edges : Multiset (V x V)) : Bool :=
      Multiset.card (edges.filter (\lambda e \Rightarrow (e.1 = e.2))) = 0
     def isLoopless_prop (edges : Multiset (V x V)) : Prop :=
      ∀ v. (v. v) € edges
    lemma isLoopless prop bool equiv (edges : Multiset (V × V)) :
        isLoopless prop edges + isLoopless edges = true := by
       unfold isLoopless_prop isLoopless
        apply decide eg true
        ny [Multiset.card eg zero]
        simp only [Multiset.eq zero iff forall not mem]
        intro e he
        exact Multiset.mem filter.mp he I>.2
        have he': e E edges := by
        exact Multiset.mem filter.mp he |>.1
43
          simp at h eq
          have : (a, b) = (a, a) := by rw [h_eq]
```

Lean4 vs CVC5: Different Paradigms, Different Powers

Lean4: Interactive Theorem Prover

- Based on Type Theory
- Emphasizes constructive proofs with verification via type-checking
- Supports formalizing pure math (e.g., mathlib4) and verified programming
- Core paradigm: "Write proofs by hand, check by kernel"

CVC5: SMT Solver

- Based on First-Order Logic
- Uses automated decision procedures for satisfiability
- Excellent for program verification
- Core paradigm: "Decide if formula is satisfiable"

Lean4 is a proof assistant; CVC5 is a solver. Both powerful, but for fundamentally different tasks.

Table of Contents

- Machine-Assisted Proving in Mathematics
- Introduction to Chip-Firing Games
- Algorithms for Winnability
- 4 Riemann-Roch for Graphs
- 5 Formalization of Graphical Riemann Roch in Lean4
- 6 Reflections & Future Work

What is the Dollar Game?

- Consider G = (V, E), which is a finite, connected, loopless, undirected **multigraph**
 - A set of unique vertices V = people; E = relationships
 - ullet Each edge vw can appear multiple times in multiset of edges E
- Each vertex has an integer amount:
 - +ve = money, -ve = debt
- Person can "fire" (lend) or "borrow" \$1 across each adjacent edge
- **Goal:** Redistribute wealth to make all values ≥ 0
- If such a sequence exists, the game is winnable

Example: A Simple Dollar Game

- Initial wealth distribution:
 - Alice: \$2Bob: -\$3
 - Charlie: \$4Elise: -\$1

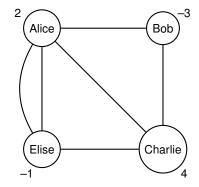


Figure: Situational wealth distribution & relationship setup.

Graphs: Formalizing Structure

- We define graphs as finite, undirected, loopless multigraphs.
- This is the illustration of Lean4 syntax for multigraph object:

```
-- Assume V is a finite type with decidable equality
variable {V : Type} [DecidableEq V] [Fintype V]

structure CFGraph (V : Type) [DecidableEq V] [Fintype V] :=
  (edges : Multiset (V × V))
  (loopless : isLoopless edges = true)
  (undirected: isUndirected edges = true)
```


Graphs: Loopless Property

```
-- Define a set of edges to be loopless only if it doesn't have
loops
def isLoopless (edges : Multiset (V × V)) : Bool :=
   Multiset.card (edges.filter (λ e => (e.1 = e.2))) = 0

def isLoopless_prop (edges : Multiset (V × V)) : Prop :=
   ∀ v, (v, v) ∉ edges
```


Graphs: Undirected Property

```
-- Define a set of edges to be undirected only if it doesn't have
   both (v, w) and (w, v)

def isUndirected (edges : Multiset (V × V)) : Bool :=
   Multiset.card (edges.filter (λ e => (e.2, e.1) ∈ edges)) = Ø

def isUndirected_prop (edges : Multiset (V × V)) : Prop :=
   ∀ v1 v2, (v1, v2) ∈ edges → (v2, v1) ∉ edges
```


Divisors: Formalizing Wealth

- A divisor $\mathrm{Div}(G) = \mathbb{Z}V = \{\sum_{v \in V} D(v)v : D(v) \in \mathbb{Z}\}.$
- The **degree** deg(D) of a divisor D is $\sum_{v \in V} D(v)$.
- For notational convenience, we refer to the number of edges incident on a vertex by valence.

```
def CFDiv (V : Type) := V \rightarrow \mathbb{Z} def deg (D : CFDiv V) : \mathbb{Z} := \Sigma v, D v

-- Degree (Valence) of a vertex as an integer def vertex_degree (G : CFGraph V) (v : V) : \mathbb{Z} := \uparrow(Multiset.card (G.edges.filter (\lambda e => e.fst = v \vee e.snd = v)))
```


14/80

Formalizing the Example in Lean4

```
inductive Person : Type
  | A | B | C | E
  deriving DecidableEq
instance : Fintype Person where
  elems := {Person.A, Person.B,
    Person.C, Person.E}
  complete := by {
    intro x
    cases x
    all_goals { simp }
}
```

Key Elements

- inductive Person creates a custom finite set of options
- DecidableEq enables equality checking between persons
- Fintype instance provides completeness proof
- Tactic is a technical term for "strategy" (automatic proof assemblers like simp, intro, cases).

Formalizing the Example in Lean4 (continued...)

```
-- Loopless, undirected graph
def exampleEdges : Multiset (Person \times Person) :=
  Multiset oflist [
    (Person.A, Person.B), (Person.B, Person.C), (Person.C, Person.E)
theorem loopless_example_edges :
  isLoopless exampleEdges = true := by rfl
-- Graph with a loop
def edgesWithLoop : Multiset (Person × Person) :=
  Multiset of list Γ
    (Person.A, Person.B), (Person.A, Person.A), (Person.B, Person.C)
theorem loopless_test_edges_with_loop :
    isLoopless edgesWithLoop = false := by rfl
```


Formalizing the Example in Lean4 (continued...)

```
def example_graph :
    CFGraph Person := {
  edges := Multiset.ofList
    (Person.A, Person.B),
    (Person.B, Person.C),
    (Person.A, Person.C),
    (Person.A, Person.E),
    (Person.A, Person.E),
    (Person.E, Person.C)
  loopless := by rfl,
  undirected := by rfl
```

```
def initial_wealth : CFDiv
    Person :=
    fun v => match v with
    | Person.A => 2
    | Person.B => -3
    | Person.C => 4
    | Person.E => -1
```

Key Insight

 Formalization and checking of vertex degrees, edge counts, and symmetry is non-trivial.

Firing Move: Lend from a Vertex

• A firing move at vertex $v, D \stackrel{v}{\rightarrow} D'$ is such that:

$$D' = D - val(v) \cdot v + \sum_{vw \in E} w$$

In Lean4:

```
def firing_move (G : CFGraph V) (D : CFDiv V) (v : V) : CFDiv V :=
  \lambda w => if w = v then D v - vertex_degree G v
         else D w + num_edges G v w
```


Set Firing

- Set firing: apply firing moves to each vertex in subset $S \subseteq V$
- In Lean4:

```
def set_firing (G : CFGraph V) (D : CFDiv V) (S : Finset V) :
    CFDiv V :=
    \lambda w => D w + finset_sum S (firing_move)
```


Example: Sequence of Firing Moves

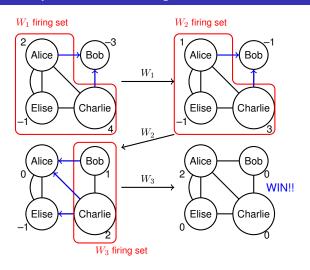


Figure: Application of set-firing moves leading to a win in the case of the divisor mentioned before

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶

Example Walkthrough in Lean4

```
-- Test Charlie lending through an individual firing move
def after_charlie_lends := firing_move example_graph initial_wealth Person.C
theorem charlie wealth after lending; after charlie lends Person.C = 1 := by rfl
theorem bob wealth after charlie lends: after charlie lends Person.B = -2 := bv rfl
def W_1: Finset Person := {Person.A. Person.E. Person.C} -- Test set firing W_1 = \{A.E.C\}
def after_W1_firing := set_firing example_graph initial_wealth W1
theorem alice_wealth_after_W1 : after_W1_firing Person.A = 1 := by rfl
theorem bob_wealth_after_W<sub>1</sub> : after_W<sub>1</sub>_firing Person.B = -1 := by rfl
theorem charlie_wealth_after_W1 : after_W1_firing Person.C = 3 := by rfl
theorem elise_wealth_after_W<sub>1</sub> : after_W<sub>1</sub>_firing Person.E = -1 := by rfl
def W<sub>2</sub>: Finset Person := W<sub>1</sub> -- Test set firing W<sub>2</sub> = {A,E,C}
def after_W2_firing := set_firing example_graph after_W1_firing W2
theorem alice_wealth_after_W2 : after_W2_firing Person.A = 0 := by rfl
theorem bob wealth after Wo : after Wo firing Person.B = 1 := bv rfl
theorem charlie_wealth_after_W2 : after_W2_firing Person.C = 2 := by rfl
theorem elise_wealth_after_W_2: after_W_2-firing Person.E = -1 := by rfl
def W_3: Finset Person := {Person.B, Person.C} -- Test set firing W_3 = \{B,C\}
def after_W3_firing := set_firing example_graph after_W2_firing W3
theorem alice wealth after W<sub>3</sub>; after W<sub>3</sub> firing Person.A = 2 := bv rfl
theorem bob wealth after W3; after W3 firing Person.B = 0 := bv rfl
theorem charlie_wealth_after_W3 : after_W3_firing Person.C = 0 := by rfl
theorem elise_wealth_after_W3 : after_W3_firing Person.E = 0 := by rfl
-- Test degree of divisors
theorem initial_wealth_degree : deg initial_wealth = 2 := by rfl
theorem after_W<sub>1</sub>_degree : deg after_W<sub>1</sub>_firing = 2 := by rfl
theorem after_W2_degree : deg after_W2_firing = 2 := by rfl
theorem after_W3_degree : deg after_W3_firing = 2 := by rfl
```


Linear Equivalence of Divisors

Key Concepts

- Linear equivalence between divisors $D \sim D'$ is defined to exist if we can obtain D' from D by a sequence of firing moves.
- Utilize group structure to capture all possible outcomes

```
instance : AddGroup (CFDiv V) := Pi.addGroup
def firing_vector (G : CFGraph V) (v : V) : CFDiv V :=
  \lambda w => if w = v then -vertex_degree G v else num_edges G v w
def principal_divisors (G : CFGraph V) :
    AddSubgroup (CFDiv V) :=
  AddSubgroup.closure (Set.range (firing_vector G))
-- Define linear equivalence of divisors
def linear_equiv (G : CFGraph V) (D D' : CFDiv V) : Prop :=
  D' - D ∈ principal_divisors G
```


Linear Equivalence is an Equivalence Relation

```
-- [Proven] Proposition: Linear equivalence is an
       equivalence relation on Div(G)
theorem linear_equiv_is_equivalence (G: CFGraph V):
 Equivalence (linear equiv G) := bv
 apply Equivalence.mk
 -- Reflexivity
 · intro D
  unfold linear_equiv
  have h_zero : D - D = 0 := by simp
  rw [h_zero]
  exact AddSubgroup.zero_mem _
 -- Symmetry
 · intros D D' h
  unfold linear equiv at *
  have h_{symm} : D - D' = -(D' - D) := by
    simp[sub eq add neg.neg sub]
  rw[h svmm]
  exact AddSubgroup.neg_mem _ h
 — Transitivity
 · intros D D' D" h1 h2
  unfold linear equivat *
  have h_{trans} : D'' - D = (D'' - D') + (D' - D) := by simp
  rw[h trans]
  exact AddSubgroup.add_mem _ h2 h1
```

Key Tactics in Lean4

- apply Sets proof structure
- intro Brings variables into context
- have Establish hypothesis
- unfold Expands definitions
- rw Rewrites expressions
- simp Auto-simplification
- exact Invokes precise match check

Objective: Effectiveness and Winnability

- A divisor D is **effective** if $D(v) \ge 0$ for all $v \in V$.
- Objective of the dollar game:
 - Is a given divisor linearly equivalent to an effective divisor?
- $\operatorname{Div}_+(G)$ is the set of effective divisors on G.
- D is **winnable** if $D \sim E$, where E is an effective divisor.

```
def effective (D : CFDiv V) : Prop := \forall v : V, D v \geq 0

def Div_plus (G : CFGraph V) : Set (CFDiv V) :=
    {D : CFDiv V | effective D}

def winnable (G : CFGraph V) (D : CFDiv V) : Prop :=
    \exists D' \in Div_plus G, linear_equiv G D D'
```


Laplacian Matrix & Firing Scripts

- Firing scripts encode multiple firing moves in one vector
- A *firing script* is a function $\sigma: V \to \mathbb{Z}$, which denotes the number of times each vertex v lends (fires) if $\sigma(v) > 0$.
- Laplacian matrix L maps firing scripts to divisor-transformations

```
def firing_script (V : Type) := V \rightarrow \mathbb{Z}

def laplacian_matrix (G : CFGraph V) : Matrix V V \mathbb{Z} := \lambda i j => if i = j then vertex_degree G i else - (num_edges G i j)

def apply_laplacian (G : CFGraph V) (\sigma : firing_script V) (D: CFDiv V) : CFDiv V := fun v => (D v) - (laplacian_matrix G).mulVec \sigma v
```


Example (continued...): Laplacian

$$D' = \begin{bmatrix} 2 \\ -3 \\ 4 \\ -1 \end{bmatrix} - \begin{bmatrix} 4 & -1 & -1 & -2 \\ -1 & 2 & -1 & 0 \\ -1 & -1 & 3 & -1 \\ -2 & 0 & -1 & 3 \end{bmatrix} \begin{bmatrix} 0 \\ -1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ -3 \\ 4 \\ -1 \end{bmatrix} - \begin{bmatrix} 0 \\ -3 \\ 4 \\ -1 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Duality: Lending vs Borrowing through Firing Scripts

Two Perspectives, One Result

Starting from the initial divisor: $D = \begin{bmatrix} 2, -3, 4, -1 \end{bmatrix}^T$ both of the following lead to the same final configuration: $D' = \begin{bmatrix} 2, 0, 0, 0 \end{bmatrix}^T$

Lending (Set-Firing):

- A, C, E fire (x2)
- Then B, C fire

$$\sigma = \left[2, 1, 3, 2\right]^T$$

Borrowing (Negated Script):

- B borrows (x2)
- Then A, E borrow

$$\sigma = \begin{bmatrix} -1, -2, 0, -1 \end{bmatrix}^T$$

Example (continued...): Laplacian in Lean4

```
— Test Laplacian matrix values and symmetricity
def example_laplacian := laplacian_matrix example_graph
theorem laplacian diagonal A: example laplacian Person.A Person.A = 4 := bv rfl
theorem laplacian diagonal B: example laplacian Person.B Person.B = 2 := by rfl
theorem laplacian_diagonal_C : example_laplacian Person.C Person.C = 3 := by rfl
theorem laplacian diagonal E: example laplacian Person. E Person. E = 3 := bv rfl
theorem laplacian off diagonal AB: example laplacian Person.A Person.B = -1 := by rfl
theorem laplacian_off_diagonal_AC : example_laplacian Person.A Person.C = -1 := bv rfl
theorem laplacian_off_diagonal_AE : example_laplacian Person.A Person.E = -2 := by rfl
theorem laplacian_off_diagonal_BC : example_laplacian Person.B Person.C = -1 := by rfl
theorem laplacian_off_diagonal_BE: example_laplacian Person.B Person.E = 0 := by rfl
theorem laplacian_off_diagonal_CE: example_laplacian Person.C Person.E = -1 := by rfl
theorem check example laplacian symmetry: Matrix.IsSvmm example laplacian := by {
 apply Matrix.IsSymm.ext
 intros i i
 cases i <:> cases i
 all_goals {
  rf1
-- Test script firing through laplacians
def firing script example: firing script Person := fun v => match v with
 | Person.A = > 0
  Person.B = > -1
  Person.C =>1
  Person.F = > 0
def res_div_post_lap_based_script_firing := apply_laplacian example_graph firing_script_example initial_wealth
theorem lap based script firing preserves degree : degree div post lap based script firing = 2 := bv rfl
```


Table of Contents

- Machine-Assisted Proving in Mathematics
- 2 Introduction to Chip-Firing Games
- Algorithms for Winnability
- 4 Riemann-Roch for Graphs
- 5 Formalization of Graphical Riemann Roch in Lean4
- 6 Reflections & Future Work

Greedy Algorithm

Approach

- Choose debt vertices and make borrowing moves until either:
 - Everyone is debt-free (success!)
 - Every vertex has borrowed at least once (failure)
- Always terminates & Produces a unique firing script

Examples

• We implemented this in Python, producing the following output:

```
The game is winnable with the greedy algorithm.

Firing Script: {'A': -1, 'B': -2, 'C': 0, 'E': -1}

Resulting Divisor: {'A': 2, 'B': 0, 'C': 0, 'E': 0}
```


Preliminaries for Winnability

Debt Clustering (q-Reduced)

- Let $q \in V \& \widetilde{V} := V \setminus \{q\}$. A divisor D is called q-reduced if the vertex labeled as q volunteers to carry all the debt in such a way that no further "vaccum-pulling" of debt towards q is possible.
- A linear-equivalence class can be identified by a unique $D_q \implies (D \text{ is winnable } \iff D_q(q) \ge 0).$
- $D \stackrel{S \subseteq \widehat{V}}{\longrightarrow} D'$ is a legal set-firing if $D'(v) \ge 0$ for all $v \in S$
- **Property:** after $D \stackrel{S \subseteq V}{\longrightarrow} D'$, some dollars move towards q.

Dhar's Algorithm

The "Burning Process"

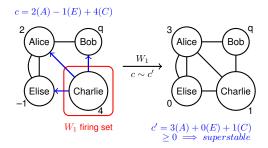
- Choose a source vertex q
- 2 Start a "fire" at q
- A vertex burns if it has fewer "firefighters" than burning edges
- Continue until no new vertices burn ^a

^aFun Note: No need to worry; firefighters are rescued by an underground tunnel built by Amherst College.

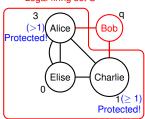
Outcomes

- Unburnt vertices = legal firing set
- To find q-reduced divisors (Don't need to go through $2^{|V|}-1$ subsets, termination guaranteed due to lexicographic ordering)
- At end, after full-burn, if $D_q(q) < 0$, then D is unwinnable!

Application to Our Example



Legal firing set S



Algorithm Terminates here & outputs the Legal firing set S

$$c = 3(A) + 0(E) + 1(C) \ge 0$$

Efficient Winnability Determination (EWD)

EWD Algorithm Outline

- **①** Choose a source vertex $q \in V$; let $\widetilde{V} := V \setminus \{q\}$.
- ② Push all debt to q by firing from q and redistributing to \widetilde{V} .
- Repeat Dhar's Algorithm:
 - While the returned set $S \neq \emptyset$, fire S.
- **§** Return TRUE if $D_q(q) \ge 0$, else FALSE.

Examples

Our Python Implementation of EWD Algorithm:

The game is winnable using Dhar's algorithm. Legal firing set: {'A', 'C', 'E'}

Our Contribution: Optimization on EWD Algorithm

Reverse-Distance Debt Concentration

- To optimize Step 2 of EWD algorithm, we concentrate all debt at q by systematically moving debt inward from the graph's periphery.
- **Key idea:** Borrow *furthest from* q first \Rightarrow push debt toward q.

How It Works

- **①** Perform a **BFS** from q to compute the distance of each $v \in \widetilde{V}$.
- ② Sort vertices in decreasing distance from q.
- **③** For each vertex v with c(v) < 0, perform a **borrowing operation** to "shift" debt closer to q.

Why This Works

- Once a vertex is cleared of debt, it stays non-negative since no future borrowing affects it.
- Fewer Dhar iterations needed than brute-force simulation.

Example Walkthrough for BFS-Optimized Dhar's

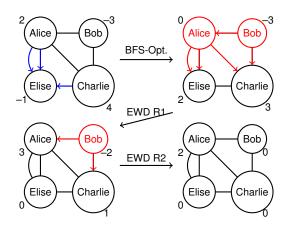


Figure: Modified EWD Algorithm Run: Debt is moved inward toward q (Bob) using BFS-based order $\{E, \{A,C\}\}$.

Table of Contents

- Machine-Assisted Proving in Mathematics
- 2 Introduction to Chip-Firing Games
- Algorithms for Winnability
- A Riemann-Roch for Graphs
- 5 Formalization of Graphical Riemann Roch in Lean4
- 6 Reflections & Future Work

Preliminaries for RRG: Orientations

- indegree = #edges directed towards v
- outdegree = #edges directed away from v
- $D(\mathcal{O}) = \sum_{v \in V} (\text{indeg}_{\mathcal{O}}(v) 1) \cdot v$
- canonical divisor $K:=D(\mathcal{O})+D(\overline{\mathcal{O}}),$ where $\overline{\mathcal{O}}$ is reverse orientation.
- K only depends on graph G since $K(v) = \deg_G(v) 2$.
- The genus g = |E| |V| + 1.

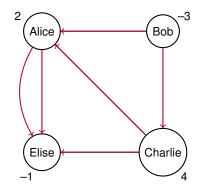


Figure: Orientation example with source Bob and sink Elise.

Dhar's Algorithm (Revisited)

Orientation-Based Perspective

- Recall: Dhar's algorithm determines superstability via burning.
- New Viewpoint: Every time a fire spreads from u to v, we orient the edge uv as $u \to v$, inducing an acyclic \mathcal{O} with unique source q.

Modified Dhar's Algorithm (Sketch)

Given a non-negative configuration c and source q:

- Initialize:
 - Burning set $B \leftarrow \{q\}$, legal firing set $S \leftarrow \widetilde{V}$, orientation $\mathcal{O} \leftarrow \emptyset$
- ② While $B \neq V$:
 - For each $v \in S$, count edges E_v from v to B
 - If $|E_v| > c(v)$: Add v to B, remove from S; Orient all $e \in E_v$ toward v
- **3** If no new vertex burns, return (S, \mathcal{O})
- 4 If all burn: return (\emptyset, \mathcal{O})

Why Acyclic?

Problem: Non-Injectivity of the Orientation \rightarrow Divisor Map

- Multiple orientations can lead to the same divisor.
- Example: O_a and O_b differ by a *cycle reversal*, but $\mathsf{D}(O_a) = \mathsf{D}(O_b)$.
- This makes the map from orientations to divisors **non-injective**.

Fix: Restrict to Acyclic Orientations

- In an acyclic orientation, no directed cycle exists.
- Any cycle reversal would introduce a cycle ⇒ disallowed.
- ullet Ensures the map $\mathcal{O}\mapsto D(\mathcal{O})$ is injective within the acyclic subset.

Takeaway

Acyclic orientations give a **well-defined representation** of divisors — a key step for bijections!

Rank: Measuring Winnability

Motivating Question

Are some games more winnable than others?

The **rank function** helps quantify this by asking: *How many chips can be removed from a divisor before it becomes unwinnable?*

Definition of Rank r(D)

Given a divisor $D \in Div(G)$:

- $\mathbf{0} \ r(D) = -1 \iff D$ is unwinnable
- (2) $r(D) \ge k \iff D E$ winnable \forall effective E s.t. deg(E) = k

Computational Challenge

 \bullet Determining r(D) is $\mbox{NP-hard}$ (and runtime grows exponentially)

The Riemann-Roch Theorem for Graphs

Theorem (Baker-Norine, 2007)

Let *D* be a divisor on a loopless, undirected graph *G*. Then:

$$r(D) - r(K - D) = \deg(D) - g + 1$$

A Bridge to Algebraic Geometry

- Rank r(D): Max chips removable while staying winnable \leftrightarrow Dimension of meromorphic function spaces (analytic with some discrete poles)
- Genus g = |E| |V| + 1: Cycle complexity \leftrightarrow Number of "handles" (or "holes") on a surface

Proof Strategy for Riemann-Roch

- Characterize maximal unwinnable divisors using acyclic orientations
- ② Show divisor D(O) from orientation has degree g-1
- Establish bijection between acyclic orientations and superstable configurations
- **o** Prove inequality: $deg(D) g + 1 \le r(D) r(K D)$
- **5** Apply the same reasoning to K D to get opposite inequality
- Conclude that equality must hold

Application to Determination of Winnability

Clifford's Theorem

If D is a divisor with $r(D) \geq 0$ and $r(K-D) \geq 0$, then $r(D) \leq \frac{\deg(D)}{2}$

Rank-Degree Relationship

- If deg(D) < 0, then r(D) = -1
- If $0 \le \deg(D) \le 2g 2$, then $r(D) \le \frac{\deg(D)}{2}$
- If deg(D) > 2g 2, then r(D) = deg(D) g

Table of Contents

- Machine-Assisted Proving in Mathematics
- 2 Introduction to Chip-Firing Games
- Algorithms for Winnability
- 4 Riemann-Roch for Graphs
- 5 Formalization of Graphical Riemann Roch in Lean4
- 6 Reflections & Future Work

Current State of Formalization

Completed Components

- Core graph and divisor definitions
- Firing moves and linear equivalence
- Q-reduced divisors
- Configurations and orientations
- Main Riemann-Roch theorem
- Key corollaries (Clifford, rank characterization)

Examples

Modular Structure

- Basic.lean: Core structures
- CFGraphExample.lean
- Config.lean:
- Orientation.lean
- Rank.lean: Rank properties
- Helpers.lean: Propositional Helpers
- RRGHelpers.lean: Theorem helpers
- RiemannRochForGraphs.lean: Main theorem

Lean4 Implementation Highlights

Proof Techniques in Lean4

- Encoded key structures: divisors, configurations, and orientations.
- Used rcases, linarith, and modular lemma chaining.

Note

- Avoid (NP-Hard) case-heavy analysis or explicit rank computation.
- Instead rely on abstraction and structural reasoning.
- Introducing Axioms as placeholders for setting structure.

Challenges in Formalization (I)

From Intuition to Code

- Translating high-level math into low-level Lean4 constructs
- Classical math skips steps; Lean requires full construction
- Example: WLOG needs to be formalized with conditionals

Managing Complexity

- Proof split into modular lemmas: firing, rank, orientations, etc.
- Ensuring consistency in hypotheses (e.g., graph connectivity)
- Balancing generality vs. usability of lemmas

Challenges in Formalization (II)

Tactics & Proof Automation

- Lean4 tactics automate steps, not strategy
- Human guidance essential in complex inequalities
- We wrote custom tactics for recurring proof patterns

Termination & Computability

- Used non-executable, symbolic rank definitions
- Explicitly proved termination of algorithms like Dhar's using well-founded measures

Lean4 as a Developing Ecosystem

- Some standard graph theory not yet in Mathlib4
- Developed custom graph framework (CFGraph) and contributed reusable proofs

Example: Handshaking Lemma in Lean4

Handshaking Theorem

In any loopless multigraph $G: \sum_{v \in V} \operatorname{val}(v) = 2 \cdot |E|$ That is, the total sum of vertex degrees equals twice the number of edges.

Lean4 Formal Statement

```
theorem helper_sum_vertex_degrees (G : CFGraph V) : \Sigma v, vertex_degree G v = 2 * \uparrow(Multiset.card G.edges)
```

Proof Sketch (Steps Lean Verifies)

- Expand vertex_degree as count of incident edges
- Use Nat.cast_sum to move cast outside
- Swap summation over vertices to summing over edges
- Each edge contributes exactly twice (to both endpoints)
- Final step: 2⋅ number of edges

Handshaking Lemma in Lean4

```
theorem helper_sum_vertex_degrees (G : CFGraph V) :
  \Sigma v, vertex_degree G v = 2 * \uparrow (Multiset.card G.edges) := by
 -- Unfold vertex degree definition
 unfold vertex_degree
 calc
  -- Start with the definition of sum of vertex degrees
  Σ v. vertex degree G v
  -- Express vertex degree as Nat cast of card filter
  = \Sigma v. \uparrow(Multiset.card (G.edges.filter (\lambda e => e.1 = v \vee e.2 = v))) := bv rf1
  -- Pull the Nat cast outside the sum over vertices
  = \uparrow (\Sigma \lor, Multiset.card (G.edges.filter (\lambda e => e.1 = \lor \lor e.2 = \lor))) := by rw [Nat.cast_sum]
  -- Apply the sum swapping lemma (Nat version)
  \_= \uparrow (Multiset.sum (G.edges.map (<math>\lambda e = > (Finset.univ.filter (\lambda v = > e.1 = v \lor e.2 = v)).card))) := bv
    rw[sum_filter_eq_map_inc_nat G]
  -- Apply the lemma relating sum of incidences to 2 * |E| (Nat version)
  = \(\frac{1}{2}\) (Multiset.card G.edges)) := bv
    rw [map_inc_eq_map_two_nat G]
  -- Pull the constant 2 outside the Nat cast
  = 2 * ↑(Multiset.card G.edges) := bv
    rw [Nat.cast_mul. Nat.cast_ofNat] -- Use Nat.cast_ofNat for Nat.cast 2
```


Helper: Zero Cardinality & Loopless Graphs

```
/-- [Proved] Helper lemma: Every divisor can be decomposed into a principal divisor and an effective divisor -/
lemma eq_nil_of_card_eq_zero \{\alpha : Type_{-}\}\ {m: Multiset \alpha \}
  (h: Multiset.card m = 0): m = \emptyset := bv
 induction m using Multiset.induction_on with
  empty = > rfl
  cons a s ih =>
  simp only [Multiset.card cons] at h
  -- card s + 1 = 0 is impossible for natural numbers
  have: \neg(Multiset.card s + 1 = 0) := Nat.succ ne zero (Multiset.card s)
  contradiction
/-- [Proven] Helper lemma: In a loopless graph, each edge has distinct endpoints -/
lemma edge endpoints distinct (G: CFGraph V) (e: V \times V) (he: e \in G.edges):
  e.1 \neq e.2 := by
 by_contra eq_endpoints
 have : isLoopless G.edges = true := G.loopless
 unfold isloopless at this
 have zero_loops: Multiset.card (G.edges.filter (\lambda e' => e'.1 = e'.2)) = 0 := by
  simp only [decide eq true eq] at this
  exact this
 have e_loop_mem : e \in Multiset.filter (\lambda e' => e'.1 = e'.2) G.edges := by
  simp [he. ea endpoints]
 have positive: 0 < \text{Multiset.card} (G.edges.filter (\lambda e' = > e'.1 = e'.2)) := by
  exact Multiset.card_pos_iff_exists_mem.mpr (e, e_loop_mem)
 have: Multiset.filter(fun e' => e'.1 = e'.2) G.edges = 0 := eq_nil_of_card_eq_zero zero_loops
 rw [this] at e_loop_mem
 cases e_loop, mem
```


Helper: Each Edge Has Exactly Two Incident Vertices

```
/-- [Proven] Helper lemma: Each edge is incident to exactly two vertices -/
lemma edge incident vertices count (G:CFGraph V) (e: V \times V) (he: e \in G.edges):
  (Finset.univ.filter (\lambda v = > e.1 = v \lor e.2 = v)).card = 2 := by
 rw [Finset.card_eq_two]
 exists e.1
 exists e 2
 constructor
 · exact edge endpoints distinct G e he
 · ext v
  simp only [Finset.mem_filter, Finset.mem_univ, true_and,
         Finset.mem insert. Finset.mem singleton
  -- The proof here can be simplified using lff.intro and cases
  apply Iff.intro
  · intro h_mem_filter -- Goal: v \in \{e.1, e.2\}
    cases h mem filter with
     inl h1 => exact Or.inl (Eq.symm h1)
     inr h2 => exact Or.inr (Eq.symm h2)
  · intro h mem set -- Goal: e.1 = v \lor e.2 = v
    cases h mem set with
    | inl h1 => exact Or.inl (Eq.symm h1)
    | inr h2 => exact Or.inr (Eq.symm h2)
```


Helper: Swapping Vertex & Edge Summations (Part 1)

```
/-- [Proven] Helper lemma: Swapping sum order for incidence checking (Nat version). -/
lemma sum_filter_eq_map_inc_nat (G: CFGraph V):
 \Sigma v : V. Multiset.card (G.edges.filter (\lambda e => e.fst = v \vee e.snd = v))
  = Multiset.sum (G.edges.map (\lambda e => (Finset.univ.filter (\lambda v => e.1 = v \vee e.2 = v)).card)) := bv
 -- Define P and g using Prop for clarity in the proof - Available throughout
 let P: V \rightarrow V \times V \rightarrow Prop := fun v e => e.fst = v \lor e.snd = v
 let g: V \times V \rightarrow \mathbb{N} := \text{fun e} => (\text{Finset.univ.filter } (P \cdot e)).card
 -- Rewrite the goal using P and g for proof readability
 suffices goal rewritten: \Sigma v: V. Multiset.card (G.edges.filter (P v)) = Multiset.sum (G.edges.map g) by
  exact goal_rewritten -- The goal is now exactly the statement 'goal_rewritten'
 -- Prove the rewritten goal by induction on the multiset G.edges
 induction G.edges using Multiset.induction on with
 — Base case: s = ∅
 | empty =>
  simp only [Multiset.filter zero, Multiset.card zero, Finset.sum const zero,
         Multiset.map_zero, Multiset.sum_zero] -- Use _zero lemmas
 -- Inductive step: Assume holds for s, prove for a :: s
 cons a s ih =>
  -- Rewrite RHS: sum(map(q, a::s)) = q a + sum(map(q, s))
  rw [Multiset.map_cons, Multiset.sum_cons]
  — Rewrite LHS: Σ v. card(filter(P v. a::s))
  -- card(filter) -> countP
  simp rw[← Multiset.countP eq card filter]
  -- Use countP_cons _ a s inside the sum. Assumes it simplifies
  -- to the form \Sigma v, (countP (P v) s + ite (P v a) 1 0)
  simp only [Multiset.countP cons]
```

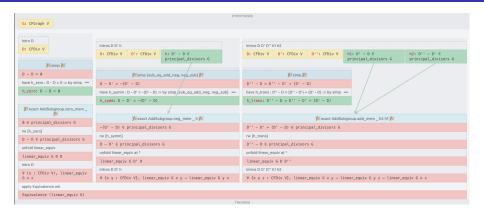

Helper: Swapping Vertex & Edge Summations (Part 2)

Helper: Each Edge Contributes 2 to Degree Sum

```
/-- [Proven] Helper lemma: Summing mapped incidence counts equals summing constant 2 (Nat version). -/
lemma map inc eq map two nat (G: CFGraph V):
 Multiset.sum (G.edges.map (\lambda = > (Finset.univ.filter (\lambda v = > e.1 = v \lor e.2 = v)).card))
   = 2 * (Multiset.card G.edges) := by
 -- Define the function being mapped
 let f: V \times V \rightarrow \mathbb{N} := \lambda e = > (Finset.univ.filter (\lambda v = > e.1 = v \lor e.2 = v)).card
 -- Define the constant function 2
 let g(_: V \times V) : \mathbb{N} := 2
 -- Show f equals a for all edges in G.edges
 have h_congr: \forall e \in G.edges, f e = g e := by
  intro e he
  simp[f.g]
  exact edge_incident_vertices_count G e he
 -- Apply congruence to the map function itself first using map_congr with rfl
 rw [Multiset.map congr rfl h congr] -- Use map_congr with rfl
 -- Apply rewrites step-by-step
```

rw [Multiset.map_const', Multiset.sum_replicate, Nat.nsmul_eq_mul, Nat.mul_comm]

Augmenting Tools



Visualization Tools

- PaperProof VSCode extension (easily integratable)
- Intuitive & Interactive visualization of Lean4 proofs
- Bridge between formal systems and intuitive understanding

Table of Contents

- Machine-Assisted Proving in Mathematics
- Introduction to Chip-Firing Games
- Algorithms for Winnability
- 4 Riemann-Roch for Graphs
- 5 Formalization of Graphical Riemann Roch in Lean4
- 6 Reflections & Future Work

Reflections & Lessons Learned

What Formalization Taught Us

- Formalization enforces clarity, precision, and modularity.
- Every lemma corresponds to a concrete mathematical insight.
- Lean4 acts as a dialogue partner—pushing for explicit structure and sometimes revealing better proof paths.

Combinatorics Meets Computation

- Lean helped distinguish canonical ideas and proof tricks.
- Led to improved understanding of the theorem's anatomy and reusable strategies.

Future Directions

Mathematical Extensions

- Formalize **Brill–Noether theory** on graphs.
- Extend to tropical curves and metric graphs.
- Explore chip-firing as network flows, e.g., flow/cut algorithms.

Machine-Assisted Proving

- Exciting potential in Al-assisted proving (e.g., TheoremLlama, MA-LoT): turning proof sketches into formal tactics.
- Build graph-theoretic foundations further in Mathlib4

Vision: Human Insight + Machine Precision Can Scale!

Current State of Simulation Tools

- Chip-Firing Tool (Williams College, 2021)
 - Built as a final project for Math 334 (Graph Theory) under the guidance of *Prof. Ralph Morrison*.
 - Interactive graph drawing + chip-firing moves
 - Great educational resource for exploring the dollar game

• Current Limitations:

- Non-standardized support for custom rule sets
- Absence of Unit Testing and Code Access
- Limited observability during the chip-firing process
- This inspired us to design a formal + programmable system for deeper experimentation to the benefit of researchers and educators.

chipfiring: Our Ongoing Python Work

Goals

- Build a unified simulation + algorithm toolkit for chip-firing games
- Bridge combinatorics, algebra, and computation in one library

Key Features

- Custom multigraph construction with labeled vertices
- Structural Support for Mathematical Objects
- Algorithmic Execution and Observability Support
- Extensively documented with type hints + PyPI + test suite

Documentation: https://chipfiring.readthedocs.io

Install: pip install chipfiring

Acknowledgements

- Grateful to my grandparents, parents, and sister for their unwavering support and belief in me.
- Deep thanks to Prof. Nathan Pflueger for exceptional mentorship, and to Prof. Daniel Velleman for Lean4 guidance.
- Appreciation to Profs. Rasheed, Ching, Benedetto, Horton, Leise (late), Daniels, Kraisler, Elliott for teaching, advising, encouragement, and cricket.
- Thankful for opportunities within and beyond Amherst College!
- Thanks to the Lean4/Mathlib4 developers for inspiring the formal methods in this thesis.
- Thanks in advance to the readers of my thesis work, especially Prof. David Zureick-Brown and Prof. Joseph Palmer!
- And to everyone who helped in small or big ways—thank you!

Thank you for being a wonderful audience!

Let's chat if you're curious about anything!

I'm all ears for questions, feedback, and collaborations.

A detailed list of references, and additional content details can be found in the thesis write-up.

Appendix: Validity of the Greedy Algorithm

Case 1: When a Solution Exists

- Suppose $D \sim D' \ge 0$ via some script σ (a firing sequence).
- Shift σ so that $\sigma \leq 0$ and some $\sigma(v) = 0$ (untouched vertices).
- The greedy strategy:
 - Borrow only from vertices with debt & Update $\sigma(u) \mapsto \sigma(u) + 1$.
 - Stop when $\sigma = 0$ (i.e., configuration matches D').
- Because σ increases by 1 each time and is bounded (term.)

Case 2: When No Solution Exists

- Any infinite borrowing sequence $\{D_i\}$ must repeat states.
- All $D_i(v)$ are bounded by $\max(D(v), \operatorname{val}(v) 1)$.
- Since $deg(D_i)$ stays fixed, the configuration space is finite.
- Hence: $\exists j < k \text{ such that } D_j = D_k. \ \sigma \text{ satisfies } \operatorname{div}(\sigma) = 0.$
- By connectedness of G, $\ker(L)$ is only constant scripts: $\Rightarrow \sigma(v) = c$ for all $v \Rightarrow \text{every vertex was borrowed from}$

Appendix: Preliminaries for Winnability

Debt Clustering (q-Reduced)

- Let $q \in V$. A divisor $D \in Div(G)$ is called q-reduced if the following conditions hold:

 - For every nonempty subset $S \subseteq V \setminus \{q\}$, there exists a vertex $v \in S$ such that $D(v) < \operatorname{outdeg}_S(v)$, where $\operatorname{outdeg}_S(v)$ denotes the number of edges vw such that $w \notin S$.
- ullet A linear-equivalence class can be identified by a unique D_q
- \Longrightarrow (D is winnable \iff $D_q(q) \ge 0$).
- $D \stackrel{S \subseteq \widetilde{V}}{\longrightarrow} D'$ is a **legal set-firing** if $D'(v) \ge 0$ for all $v \in S$

Appendix: Winnability Ordering

Motivation

Compare "Winnability" of two Divisors.

Ordering of Divisors

- For a spanning tree (T,q) of G(V,E) rooted at a vertex q, let $(v_1=q),v_2,\ldots,v_n$ be a tree ordering of the vertices, where:
 - T is a connected, cycle-free subgraph of G with V vertices and n-1 edges,
 - if v_i lies on the unique path from q to v_i in T, then i < j.

We say that $D' \prec D$ if either:

- \bullet deg(D') < deg(D), or
- $ext{2} \operatorname{deg}(D') = \operatorname{deg}(D) \text{ and } i \text{ is smallest index s.t. } D'(v_i) > D(v_i).$
- **Property:** after $D \stackrel{S \subseteq \widetilde{V}}{\longrightarrow} D'$, some dollars move towards $q, D' \prec D$.

Appendix: More on Configurations

Configurations & Key Properties

- Fix a vertex $q \in V$ and define $\widetilde{V} := V \setminus \{q\}$.
- A configuration c is an element of $\mathsf{Config}(G,q) = \mathbb{Z}\widetilde{V} \subseteq \mathsf{Div}(G)$. $\Rightarrow c$ omits tracking chips at q.
- Non-negativity: $c \ge 0$ if $c(v) \ge 0$ for all $v \in \widetilde{V}$.
- Degree: $\deg(c) = \sum_{v \in \widetilde{V}} c(v)$.
- Linear equivalence: $c \sim c'$ if c' can be reached from c via lending/borrowing operations.
- Note: deg(c) may differ from deg(c') (chip count at q is ignored).
- $c \stackrel{S \subseteq \widetilde{V}}{\longrightarrow} c'$ is a **legal set-firing** if $c'(v) \ge 0$ for all $v \in S$.
- c is **superstable** $\iff c \ge 0$ and no legal nonempty set-firing exists.

Appendix: Some Consequential Bridges

Acyclic Orientations ↔ Maximal Superstables

Fix $q \in V$. Then, the map $\mathcal{O} \mapsto c(\mathcal{O})$ defines a **bijection** between:

- Acyclic orientations of G with q as the unique source, and
- ullet Maximal superstable configurations $c\in {\sf Config}(G,q)$
- Maximal unwinnable q-reduced divisors

This correspondence arises naturally from modified Dhar's.

Definitions That Connect the Dots

- Maximal Superstable Configuration: A superstable c such that for any $c' \ge c$, if c' is also superstable, then c = c'.
- Maximal Unwinnable Divisor: An unwinnable divisor D such that D+v is winnable for every vertex $v \in V$.

Appendix: Indegree Determines Acyclic Orientation

Lemma (Indegree Determination Lemma)

Let $\mathcal{O}, \mathcal{O}'$ be two **acyclic orientations** of a graph G. If for all $v \in V$:

$$\operatorname{indeg}_{\mathcal{O}}(v) = \operatorname{indeg}_{\mathcal{O}'}(v) \implies \mathcal{O} = \mathcal{O}'$$

Proof Sketch

- In any acyclic orientation \mathcal{O} , there must exist at least one **source vertex** (indeg(v) = 0). Otherwise, the reverse orientation $\overline{\mathcal{O}}$ has no sink \Rightarrow contains a cycle \Rightarrow contradiction.
- Remove all source vertices V_1 and their incident edges to get a smaller acyclic orientation \mathcal{O}_1 on subgraph G_1 .
- Repeat this process: remove sources layer by layer to get a vertex partition (V_1, V_2, \dots, V_k) .
- This sequence is uniquely determined by the indegree function.
- Therefore, the indegree sequence determines the orientation.

Appendix: Acyclic O and Superstables Bijection

Lemma: Fix $q \in V$. Then the map: $\mathcal{O} \mapsto c(\mathcal{O})$ defines a **bijection** between:

- ullet Acyclic orientations of G with q as the unique source, and
- Maximal superstable configurations in Config(G, q)

Proof Sketch

Injectivity:

• If $c(\mathcal{O}) = c(\mathcal{O}')$, then $\mathrm{indeg}_{\mathcal{O}} = \mathrm{indeg}_{\mathcal{O}'}$, which implies $\mathcal{O} = \mathcal{O}'$ because of indegree determination lemma.

Surjectivity:

- Let c be a maximal superstable configuration.
- Run modified Dhar's algorithm from q: terminates with $S = \emptyset$.
- Produces acyclic orientation \mathcal{O} with q as the unique source.
- No other source or directed cycle (violation of superstability).

Appendix: Why is $deg(c) \leq g$ for Superstables?

Key Idea

Every superstable configuration c is bounded in degree by a corresponding maximal one: $\deg(c) \leq \deg(c(\mathcal{O})) = g$

- Let \mathcal{O} be an acyclic orientation with q as the unique source.
- Define: $c(\mathcal{O})(v) = \mathrm{indeg}_{\mathcal{O}}(v) 1$ for $v \in V \setminus \{q\}$
- Then:

$$\deg(c(\mathcal{O})) = \sum_{v \neq q} (\text{indeg}(v) - 1) = |E| - (|V| - 1) = g$$

Since superstabilization reduces or maintains chip count:

$$\deg(c) \leq g$$

• Equality holds iff $c = c(\mathcal{O})$ maximal superstable.

Takeaway

Maximal superstables uniquely hit the genus g; others fall short.

Appendix: Maximal Superstables and Maximal Unwinnables

Let c be a superstable configuration and D a divisor. Then:

- **1** c is maximal superstable $\iff \deg(c) = g$
- 2 D is **maximal unwinnable** \iff its q-reduced form is c-q, with c maximal superstable

Proof Sketch

- Every superstable c satisfies: $deg(c) \leq g$
- Equality holds $\iff c = c(\mathcal{O})$ (maximal superstable)
- Now for (2) \Rightarrow , from D = c + kq, maximal unwinnable implies $k = -1 \Rightarrow D = c q$
- \Leftarrow If D = c q with maximal c, then:
 - D is unwinnable (D(q) < 0)
 - ullet D+v is winnable for all $v\in V$ by superstabilizing c+v and tracking chip sent to q

Appendix: Acyclic Orientations & Maximal Unwinnable Divisors

Proposition: Bijection and Degree Bound

Let $q \in V$ be fixed. Then:

- **1** The map $\mathcal{O} \mapsto D(\mathcal{O}) := c(\mathcal{O}) q$ defines a **bijection** between:
 - Acyclic orientations of G with q as unique source, and
 - Maximal unwinnable q-reduced divisors
- ② If D is maximal unwinnable, then: $\deg(D) = g 1 \Rightarrow \deg(D) \geq g \implies \mathsf{D}$ is winnable.
- From prior results: Maximal unwinnables take the form D=c-q where c is maximal superstable with $\deg(c)=g$. Hence, Proved.
- This provides a clean threshold for deciding winnability!

Takeaway

Acyclic orientations with source q uniquely correspond to maximal unwinnable divisors of degree g-1.

Appendix: Why Define Orientations & Configurations?

Orientations: Encoding Graph Structure Algebraically

Assign directions to edges ⇒ define indegree-based divisors:

$$D(\mathcal{O}) := \sum_{v \in V} (\text{indeg}_{\mathcal{O}}(v) - 1) \cdot v$$

- Restricting to acyclic orientations with unique source q ensures:
 - Well-defined, injective map to divisors
 - Canonical bridge to maximal superstables

Configurations: Localized Divisor Views

- Configuration $c \in \mathbb{Z}^{V \setminus \{q\}}$ omits chip count at q
- Enables formalization of:
 - Superstability: No legal set-firing in $V \setminus \{q\}$
 - q-reduction: Pushes all debt to q (central for winnability)

Appendix: Subadditivity of Rank

Corollary: Rank Inequality

For any divisors D, D' with $r(D), r(D') \ge 0$,

$$r(D+D') \ge r(D) + r(D')$$

Sketch of Proof

- Suppose $r(D) \ge k_1$ and $r(D') \ge k_2$
- Then for any $E_1, E_2 \ge 0$ with $\deg(E_1) = k_1$, $\deg(E_2) = k_2$:

$$D-E_1$$
 and $D'-E_2$ are winnable

• So for $E'' = E_1 + E_2$ (with $deg(E'') = k_1 + k_2$), we have:

$$(D + D') - E'' = (D - E_1) + (D' - E_2)$$
 is winnable

• Therefore: $r(D + D') \ge k_1 + k_2 \Rightarrow r(D + D') \ge r(D) + r(D')$.

Appendix: More Details for Riemann-Roch

- **Start with** r(D): Use the definition to find an effective divisor E with deg(E) = r(D) + 1 such that D E is unwinnable.
- **2 Apply Dhar's Algorithm:** Find a q-reduced divisor equivalent to D-E, say c+kq with k<0.
- **1 Link to Orientations:** Extend c to a maximal superstable c'.
 - Associate an acyclic orientation $\mathcal O$ such that $D(\mathcal O)=c'-q$.
- **Output** Define correction term H:

$$H := (c' - c) - (k+1)q \sim D(\mathcal{O}) - (D - E)$$

- **⑤** Relate to the Canonical Divisor: $K H D \sim D(\overline{\mathcal{O}}) E$.
 - Since the RHS is unwinnable, deduce: $r(K-D) < \deg(H)$.
- **6** Use degree bound: Apply $deg(D(\mathcal{O})) = g 1$ and deg(E) from 1:

$$r(K-D) < g-1-\deg(D)+r(D)+1 \Rightarrow \deg(D)-g < r(D)-r(K-D)$$

- **②** Apply symmetry: Swap $D \leftrightarrow K D$ for reverse inequality.
 - Onclude equality: $r(D) r(K D) = \deg(D) g + 1$

Appendix: Canonical Duality of Maximal Unwinnables

Corollary: Duality via Canonical Divisor

A divisor D is **maximal unwinnable** if and only if K-D is also maximal unwinnable.

Sketch of Proof

- If D is maximal unwinnable, then: r(D) = -1 and deg(D) = g 1.
- Use Riemann–Roch Theorem:

$$r(D)-r(K-D)=\deg(D)-g+1=0 \Rightarrow r(K-D)=-1$$

Compute degree:

$$\deg(K - D) = \deg(K) - \deg(D) = 2g - 2 - (g - 1) = g - 1$$

- Hence, K D is also maximal unwinnable.
- Reverse implication follows by symmetry: D = K (K D)

Appendix: Clifford's Theorem for Graphs

Clifford's Theorem (Graph-Theoretic Version)

If $D \in \operatorname{Div}(G)$ satisfies: $r(D) \ge 0$ and $r(K - D) \ge 0$ then:

$$r(D) \le \frac{1}{2}\deg(D)$$

Proof Sketch (Using Riemann–Roch)

- Use Riemann–Roch: $r(D) = r(K D) + \deg(D) g + 1$
- Use $D + (K D) = K \Rightarrow r(K) \ge r(D) + r(K D)$
- Substitute: $g 1 = r(K) \ge r(D) + r(K D)$
- Plug into earlier expression:

$$g-1 \ge r(D) + r(D) - \deg(D) - 1 + g \Rightarrow r(D) \le \frac{1}{2}\deg(D)$$

Appendix: Rank Determination by Degree

Corollary: Rank Behavior Based on Degree

Let $D \in Div(G)$, then:

- **1** If deg(D) < 0, then r(D) = -1
- ② If $0 \le \deg(D) \le 2g 2$, then $r(D) \le \frac{1}{2} \deg(D)$
- **3** If deg(D) > 2g 2, then r(D) = deg(D) g

Proof Sketch Summary

- (1): Immediate from the definition of rank.
- (2):
 - If D is unwinnable, then $r(D) = -1 \le \frac{1}{2} \deg(D)$
 - If $r(D) \ge 0$ and r(K-D) = -1: Riemann–Roch gives $r(D) = \deg(D) g$, and since $g \ge \frac{1}{2} \deg(D) + 1$, we get the bound.
 - If $r(K-D) \ge 0$: Apply Clifford's Theorem directly.
- (3): Since deg(D) > deg(K), K D has negative degree $\Rightarrow r(K D) = -1$. Apply RRG to get: r(D) = deg(D) g.